Electrical Instability Due to Regional Increase in Extracellular Potassium Ion Concentration.

نویسندگان

  • Sunil M Kandel
  • Bradley J Roth
چکیده

INTRODUCTION Ventricular tachycardia and ventricular fibrillation are the two most dangerous arrhythmias. Both are related to reentrant electrical activity in the ventricles. Many studies of arrhythmias consider a homogeneous sheet of cardiac tissue. Since normal ventricular myocardium is inhomogeneous and inhomogeneities play an important role in the induction of reentry, we investigate the effect of a localized inhomogeniety developed at the border between normal and ischemic region. METHODS We used the bidomain model to represent the electrical properties of cardiac tissue and a modified version of the dynamic Luo-Rudy (LRd) model to represent the active properties of the membrane. To investigate the effect of a localized inhomogeneity, the extracellular potassium [K]e concentration is raised to 10 mM from normal [K]e (4 mM) on the right half of the tissue. RESULTS AND DISCUSSION A train of cathodal stimuli are applied from the lower left corner of the tissue with different basic cycle lengths (BCL). At certain BCL, the spatial heterogeneity created with regional elevation of [K]e can lead to action potential instability (alternans) in the normal and border regions, and 2:1 conduction block in the ischemic region. We observed the reentry when local heterogeneity in [K]e is changed from 10 to 12 mM on the right half of the virtual ventricular myocardium sheet. CONCLUSION Electrical alternans occur during high heart rates and are observed in patients suffering from ventricular tachycardia. It is an early indication of left ventricular systolic impairment. This study will help to evaluate alternans as a predictor and guide for antiarrhythmic therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distribution of extracellular potassium and its relation to electrophysiologic changes during acute myocardial ischemia in the isolated perfused porcine heart.

An experimental approach is described to quantitate inhomogeneity in extracellular K concentration ([K+]out) in the presence of ischemia and to relate this inhomogeneity to the electrophysiologic changes. Extracellular potassium concentration and local direct-current electrograms from the same sites were measured in isolated perfused pig hearts with the use of multiple electrodes. Dispersion of...

متن کامل

Hyperkalemia-induced complete heart block

Background: Potassium, as an extracellular ion, plays an important role in the electrophysiologic function of the myocardium and any change in extracellular concentration of this ion might have a marked impression upon myocyte electrophysiologic gain. High serum potassium levels are thought to impair pulse conduction in Purkinje fibers and ventricles more than that in the Atrio...

متن کامل

Regional increase of extracellular potassium leads to electrical instability and reentry occurrence through the spatial heterogeneity of APD restitution.

The heterogeneities of electrophysiological properties of cardiac tissue are the main factors that control both arrhythmia induction and maintenance. Although the local increase of extracellular potassium ([K(+)](o)) due to coronary occlusion is a well-established metabolic response to acute ischemia, the role of local [K(+)](o) heterogeneity in phase 1a arrhythmias has yet to be determined. In...

متن کامل

Physics of Potassium Ion Channel Inactivation in Neurons

The electrical signaling capabilities of neurons depend on the flows of ions into and out of their axons. Potassium ions exit an axon’s interior through a potassium channel or pore that connects the intracellular region with the extracellular region. The channel opens, or is activated, allowing potassium ions to exit. The channel then undergoes a blocking transition in which the channel is phys...

متن کامل

The membrane potential of human platelets.

The membrane potential of the human platelet was investigated using the membrane potential probes 3,3'-dipropyl-2,2'-thiadicarbocyanine iodide and tritiated triphenylmethylphosphonium bromide. The membrane potential in physiologic buffer was estimated to be 52-60 mV inside negative. The membrane was depolarized when extracellular potassium or hydrogen ion concentrations were increased. Changes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nature and science

دوره 1 8  شماره 

صفحات  -

تاریخ انتشار 2015